Dan Shai
Back to Blog
August 29, 2018 , dan
wtf with u
This is my 4-! yes it is bro
a
2
+
b
2
=
c
2
a^2 + b^2 = c^2
a
2
+
b
2
=
c
2
(
∑
∗
k
=
1
n
a
k
b
k
)
2
≤
(
∑
∗
k
=
1
n
a
∗
k
2
)
(
∑
∗
k
=
1
n
b
k
2
)
\left( \sum*{k=1}^n a_k b_k \right)^2 \leq \left( \sum*{k=1}^n a*k^2 \right) \left( \sum*{k=1}^n b_k^2 \right)
(
∑
∗
k
=
1
n
a
k
b
k
)
2
≤
(
∑
∗
k
=
1
n
a
∗
k
2
)
(
∑
∗
k
=
1
n
b
k
2
)
graph LR A[Square Rect] -- Link text --> B((Circle)) A --> C(Round Rect) B --> D{Rhombus} C --> D
gone with wind
Lets be light!
Dan shai © 2018